积屑瘤的硬度较基体材料高一倍以上,实际上可代替刀刃切削。积屑瘤的底部较稳定,顶部同工件和切屑没有明显的分界线,容易破碎和脱落,一部分随切屑带走,一部分残留在加工表面上,从而使工件变得粗糙。所以在精加工时一定要设法避免或抑制积屑瘤的形成。积屑瘤的产生、成长和脱落是一个周期性的动态过程,它使刀具的实际前角和切削深度也随之发生变化,引起切削力波动,影响加工稳定性。
金属切削原理
切削原理积屑瘤
在用低、中速连续切削一般钢材或其他塑性材料时,切屑同刀具前面之间存在着摩擦,如果切屑上紧靠刀具前面的薄层在较高压强和温度的作用下,同切屑基体分离而粘结在刀具前面上,再经层层重叠粘结,在刀尖附近往往会堆积成一块经过剧烈变形的楔状切屑材料,叫做积屑瘤。积屑瘤的硬度较基体材料高一倍以上,实际上可代替刀刃切削。积屑瘤的底部较稳定,顶部同工件和切屑没有明显的分界线,容易破碎和脱落,一部分随切屑带走,一部分残留在加工表面上,从而使工件变得粗糙。所以在精加工时一定要设法避免或抑制积屑瘤的形成。积屑瘤的产生、成长和脱落是一个周期性的动态过程(据测定,它的脱落频率为30~170次/秒),它使刀具的实际前角和切削深度也随之发生变化,引起切削力波动,影响加工稳定性。在一般情况下,当切削速度很低或很高时,因没有产生积屑瘤的必要条件(较大的切屑与刀具前面间的摩擦力和一定的温度),不产生积屑瘤。
切削力
切削时刀具的前面和后面上都承受法向力和摩擦力,这些力组成合力F,在外圆车削时,一般将这个切削合力F分解成三个互相垂直的分力:切向力Fv──它在切削速度方向上垂直于刀具基面,常称主切削力;径向力Fp──在平行于基面的平面内,与进给方向垂直,又称推力;轴向力Ff──在平行于基面的平面内,与进给方向平行,又称进给力。一般情况下,Fv最大,Fp和Ff较小,由于刀具的几何参数、刃磨质量和磨损情况的不同和切削条件的改变,Fp、Ff对Fv的比值在很大的范围内变化。 切削过程中实际切削力的大小,可以利用测力仪测出。测力仪的种类很多,较常用的是电阻丝式和压电晶体式测力仪。测力仪经过标定以后就可测出切削过程中各个分力的大小。
切削热
切削金属时,由于切屑剪切变形所作的功和刀具前面、后面摩擦所作的功都转变为热,这种热叫切削热。使用切削液时,刀具、工件和切屑上的切削热主要由切削液带走;不用切削液时,切削热主要由切屑、工件和刀具带走或传出,其中切屑带走的热量最大,传向刀具的热量虽小,但前面和后面上的温度却影响着切削过程和刀具的磨损情况,所以了解切削温度的变化规律是十分必要的。
切削温度
切削过程中切削区各处的温度是不同的,形成一个温度场(图4), 这个温度场影响切屑变形、积屑瘤的大小、加工表面质量、加工精度和刀具的磨损等,还影响切削速度的提高。一般说来,切削区的金属经过剪切变形以后成为切屑,随之又进一步与刀具前面发生剧烈摩擦,所以温度场中温度分布的最高点不是在正压力最大的刃口处,而是在前面上距刃口一段距离的地方。切削区的温度分布情况,须用人工热电偶研究金属切削加工过程中刀具与工件之间相互作用和各自的变化规律的一门学科。在设计机床和刀具、制订机器零件的切削工艺及其定额、合理地使用刀具和机床以及控制切削过程时,都要利用金属切削原理的研究成果,使机器零件的加工达到经济、优质和高效率的目的。
刀具磨损
刀具在切削时的磨损是切削热和机械摩擦所产生的物理作用和化学作用的综合结果。刀具磨损表现为在刀具后面上出现的磨损带、缺口和崩刃等,前面上常出现的月牙洼状的磨损,副后面上有时出现的氧化坑和沟纹状磨损等当这些磨损扩展到一定程度以后就引起刀具失效,不能继续使用。刀具逐渐磨损的因素,通常有磨料磨损、粘着磨损、扩散磨损、氧化磨损、热裂磨损和塑性变形等。在不同的切削条件下,尤其是在不同切削速度的条件下,刀具受上述一种或几种磨损机理的作用。例如,在较低切削速度下,刀具一般都因磨料磨损或粘着磨损而破损;在较高速度下,容易产生扩散磨损、氧化磨损和塑性变形。
金属切削原理与刀具第五版
金属切削是制造业中最常见的加工方式之一。它通过切削刀具对金属材料进行切削、钻孔、镗孔、铣削、车削等加工操作,以达到所需形状和尺寸的目的。金属切削的原理是利用刀具在工件表面切削时对金属材料产生剪切力,使金属材料断裂并产生削屑。金属切削的基本原理可以归纳为以下几个方面:
1、切削角原理:切削角是切削刀具的重要参数之一,它的大小和方向会影响到切削力、切削温度、表面质量等多个方面。在金属切削中,切削角越小,所需的切削力和功率就越小,但表面质量和刀具寿命可能会受到影响。
2、剪切刃原理:金属切削时,切削刃的剪切作用是主要的切削力来源之一。剪切刃的设计要考虑切削力、切削温度、切削力分布等多个因素,以保证加工效率和刀具寿命。
3、切削深度原理:切削深度是指刀具在工件表面所切削的深度。切削深度对切削力、切削温度、表面质量等多个方面都有影响,因此需要根据具体的加工要求和刀具性能进行合理选择。
4、切削速度原理:切削速度是指刀具在工件表面移动的速度。切削速度对切削力、切削温度、表面质量、刀具寿命等多个方面都有影响。通常情况下,切削速度越高,切削力和温度就越大,但是可以提高加工效率。
5、切削刀具是金属切削的重要工具之一,其质量和性能对加工效率、加工质量和成本都有重要影响。常见的切削刀具有钻头、铣刀、车刀、镗刀等多种类型。这些刀具的选择要根据加工材料、加工形式、切削条件等因素进行合理匹配。刀具的主要性能指标包括硬度、韧性、耐磨性、切削性能等。一般来说,硬度越高的刀具可以更好地抵抗磨损,但也会更容易断裂;韧性越高的刀具则更能适应高速切削和大切削力的情况,但其切削寿命可能会受到影响。
此外,刀具的几何形状和刀面处理也是影响刀具性能的重要因素。刀具的几何形状包括刃角、刃磨角、切削角等多个参数,这些参数的选择要根据加工材料、切削条件等具体情况进行调整。刀面处理则包括涂层、气体渗碳、离子注入等多种方式,这些处理可以提高刀具的耐磨性、热稳定性和抗腐蚀性。
金属切削是制造业中非常重要的一种加工方式,其成功实施离不开切削原理和刀具的合理选择和应用。
金属切削原理与刀具的目录
第一章 金属切削加工的基本定义第一节 切削运动和工件表面
第二节 刀具切削部分的几何角度
第三节 切削要素
第二章 刀具材料
第一节 刀具材料应具备的性能
第二节 常见刀具材料
第三节 其他刀具材料
第三章 金属切削过程及其基本规律
第一节 切削变形
第二节 切削力
第三节 切削温度
第四节 刀具磨损
第四章 金属切削基本理论的应用
第一节 切屑控制
第二节 改善工件材料的切削加工性
第三节 切削液及其选用
第四节 已加工表面的质量
第五节 刀具几何参数的合理选择
第六节 切削用量的合理选择
第五章 车刀
第一节 车刀的分类
第二节 焊接车刀
第三节 可转位(刀片)车刀
第四节 成形车刀
第六章 钻削与孔加工刀具
第一节 孔加工刀具分类
第二节 深孔钻
第三节 钻削与麻花钻
第四节 铰刀
第五节 镗刀
第六节 孔加工复合刀具
第七章 铣削与铣刀
第一节 铣刀的分类及铣削
第二节 硬质合金面铣刀
第三节 尖齿铣刀
第四节 成形铣刀
第八章 其他刀具
第一节 拉刀
第二节 齿轮刀具
第三节 螺纹刀具
第四节 自动线和数控机床刀具
附录 本书采用的名词、术语和符号